Jul 1, 2020

How can insurers realise the true value of AI?

AI
Insurance
Chak Kolli, Global CTO, Insura...
4 min
ai
Chak Kolli, Global CTO, Insurance at DXC Technology that looks at how artificial intelligence can be used in the insurance industry...

 As artificial intelligence (AI) and digital transformation find their way into every aspect of our daily lives, we are gradually seeing changes taking place in different sectors.

Progressively, AI is permeating the insurance value chain and it is set to significantly transform the industry. In product development, AI is enabling insurers to create more profitable and effective products based on insights from past claims and product uptake in the market.

Underwriters are also using AI to assist in creating a better understanding of risk for new and underserved markets.

Also, with the integration of conversational interfaces, there are improvements to customer service and advances in fraud detection are enabling efficient claims processing. 

Yet, despite these AI transformations, the potential of AI has yet to be fully realised. For now, AI’s role in the insurance industry is largely limited to optimising existing business processes rather than developing new and disruptive business models.

There are a few key reasons for this:

AI is highly centralised

Insurance companies are currently integrating applications to use machine learning/deep learning (ML/DL) models to gather insights from the enormous amount of data they generate.

However, the increasing complexity of ML/DL models requires enormous amounts of compute power. According to research from OpenAI, the computing power required over the past few years has increased 300,000 times between 2012 and 2018.

At the moment, only a few niche technology companies have the skilled data scientists required to develop complex models, enormous datasets required to train these models, infrastructures that are required to deploy these models at scale.

Lack of AI ready data

The problem is not the lack of data in the industry, but that insurance entities are struggling with an enormous amount of data that isn’t AI-ready.

Data needs to be cleaned, integrated, moved to appropriate infrastructure, governed and managed continuously.

It also has to be labelled correctly for accurate decision making; this labelling process is time-consuming and expensive. Further, negative data is not easily available to train ML/DL models in failure scenarios.

For example, you would never send a fleet of self-driving cars out on a mission to crash on purpose just to help an AI decide what went wrong at a crash scene.

Still evolving explainability of AI decisions 

For industries such as insurance that operate in strict regulatory environments, the opaqueness of these models is an issue. Models can be created with an unintentional bias that skews decisions in unexpected ways.

The technology to explain why and how AI models made their decisions is still in its initial stages.

Overcoming AI obstacles

The good news is, these obstacles are temporary and should not be seen as deal-breakers.

There are ways to overcome them. For example, tech companies are pursuing multiple strategies to increase AI’s value and boost its adoption.

Some solutions involve combining emerging technologies while others involve creating incentives to contribute new information or filter data that feeds AI applications.

Either way, the broader concept is the same — for insurers to move AI away from large tech companies that solely manage solutions and put it into a decentralised, democratised form. Here’s how: 

  • Differentiating AI models

Access to unique data means insurers will be able to find ways to train their ML/DL models to help distinguish their business. This will allow insurers to capitalise on AI and differentiate themselves from other insurers that are using AI for similar use cases.

  • Developing scaled-down algorithms

Many algorithms require large, expensive datasets to identify patterns and generate insights. Developing ML/DL algorithms that can function on comparatively small datasets will make them less expensive and more widely available.

  • Create an AI ecosystem

As AI decentralises, insurers will find benefits in creating an ecosystem in which datasets and models can be shared among partners and even other insurers.

For example, an individual insurer would typically build its own datasets to train ML/DL models to process handwritten notes by adjusters, estimation documents, images and videos, and the plethora of information online about the insured.

They could use their own datasets in addition to those from the ecosystem to create new value-added features in the ML/DL model.

Realising true potential of AI

Insurers are already reaping the rewards of AI and there is an understanding that this technology has the potential to create much more value in the future.

However, the way to achieve that has been less clear. Taking a decentralised approach will provide data management with the necessary resources and training needed to enable the technology to grow.

Improving model making, sharing datasets and encouraging contributions from policyholders will make this fast-evolving technology truly useful and value-added.

Share article

Jun 11, 2021

SLK Software: Optimising performance in the digital economy

SLKSoftware
AI
Automation
CNAInsurance
2 min
Recently featured in our profile of CNA Insurance, we take a closer look at how SLK Software is powering disruption in the digital era

Established in 2000 in Bengaluru, India, SLK Software recognises that fast-paced digital transformation is creating an unprecedentedly fertile period of opportunity for global businesses.

As such, with a firm belief in the power of simplification and automation to yield new and exciting experiences, the company has been challenging the status quo for over 20 years through an approach that is:

  • Relationship oriented
  • Strategically focused on a desired outcome
  • Reliant on automation tech

Believing in purposeful automation

SLK’s specialisation in automation tech is full spectrum: artificial intelligence (AI) and machine learning (ML), Computer Vision, Natural Language Processing (NLP), Robotic Process Automation (RPA), and more, are all part of its core competencies. 

Citing 90% productivity improvements, 30% business growth through better customer experiences, and up to 20x faster go-to-market capabilities, the reasons for its focus are clear.

The company currently serves the banking, financial services, insurance, retirement services, M&A, manufacturing, and supply chain sectors. Solutions offered include:

Accelerating workflow processes

In addition to these services, SLK offers three products/platforms: Avo Assist - RPA, Avo Assure - Test Automation, and Avo Discover - Process Discovery.

 

 

The latter is a tool specifically calibrated to enable business users an easy method for capturing document processes. This can occur across any application, with these individual tasks then seamlessly combined for both improved compliance and governance. 

Carol Castelloni, VP of Transformation at CNA Insurance, highlighted this as providing critical support in helping the company meet its business objectives:

“SLK’s Avo Discover tool accelerates how we can document workflow processes, measure impacts on enhancements, and identifies future automation opportunities.” Liberated from having to focus on these process-driven aspects of business, CNA Insurance has been able to refocus its attention on creative problem-solving instead.

Ultimately, this is the most important benefit that SLK brings: it optimises the back end so that clients can channel their energy towards what matters the most, customers.

Read more about SLK Software and CNA Insurance in the June 2021 edition of FinTech Magazine.

Pictured: SLK Software team (source)

Share article